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Let C(t): I W R2 be a simple closed unit-speed C2 curve in R2 with normal nF(t).
The curve C generates a distribution C which acts on vector fields vF(x1, x2):
R2W R2 by line integration according to

C(vF)=F vF(C(t)) · nF(t) dt.

We consider the problem of efficiently approximating such functionals. Suppose
we have a vector basis or frame F=(fFm) with dual F*=(fFgm); then an m-term
approximation to C can be formed by selecting m terms (mi: 1 [ i [ m) and taking

C̃m(vF)=C
m

i=1
C(fFgmi ) [vF, fFmi].

Here the mi can be chosen adaptively based on the curve C.
We are interested in finding a vector basis or frame for which the above scheme

yields the highest-quality m-term approximations. Here performance is measured by
considering worst-case error on vector fields which are smooth in an L2 Sobolev
sense:

Err(C, C̃m)=supp{|C(vF)− C̃m(vF)| : ||Div(vF)||2 [ 1}.

We establish an isometry between this problem and the problem of approximat-
ing objects with edges in L2 norm. Starting from the recently-introduced tight
frames of scalar curvelets, we construct a vector frame of curvelets for this problem.
Invoking results on the near-optimality of scalar curvelets in representing objects
with edges, we argue that vector curvelets provide near-optimal quality m-term
approximations. We show that they dramatically outperform both wavelet and
Fourier-based representations in terms of m-term approximation error.



The m-term approximations to C are built from terms with support approaching
more and more closely the curve C with increasing m; the terms have support
obeying the scaling law width % length2.

Comparable results can be developed, with additional work, for scalar curvelet
approximation in the case of scalar integrands

I(f)=F f(C(t)) dt.
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1. INTRODUCTION

1.1. Point Evaluation

Consider the Dirac distribution d on R, which acts on smooth functions
to give point evaluation:

Od, fP=f(0). (1)

It is well-known that d can be represented at least formally as a series in
various bases and frames. For example, as d is supported in [−p, p) we
may use sinusoids to represent it, getting

d=
1

`2p
C
k
Od, e ikhP e ikh

=
1

`2p
C
k

e ikh, (2)

where the equality has an appropriate distributional interpretation. All
mathematical scientists are familiar with this representation, but this
familiarity may have dulled our sensitivity to a key point. This representa-
tion of d is extremely problematic, stemming from the many non-localized
terms of equal intrinsic size. The two sides of Eq. (2) can only balance
owing to a truly heroic cancellation of the terms on the right.

In another basis or frame, the representation of the Dirac distribution
can be fundamentally better behaved. If we use nice orthonormal wavelets
of compact support to represent d, we have

d=C
I
Od, kIP kI (3)

=C
I

kI(0) kI, (4)
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where, for comparability with the Fourier example, the (kI)I are taken as
periodic wavelet orthobasis for L2[−p, p), and the indices I range, as
usual, through the dyadic intervals [k/2 j, (k+1)/2 j). Although the equality
must still be interpreted in a distributional sense, it is much less problematic
than in the Fourier case. In fact, Daubechies wavelets obey, for appropriate
c1 and c2,

|kI(x)| [ 2 j/21{c1 I}(x) · c2,

where c1I denotes the dilation of I by a factor of c1 about its midpoint.
Hence, the series is actually sparse. For example, there are only a finite
number of nonzero terms at any x ] 0. Moreover, the sum can be stratified
by scale index j,

C
I

kI(0) kI(x)=C
j

C
k

kj, k(0) kj, k(x)

and there will be at most C3 nonzero terms at each level j.
The density of the Fourier representation and the sparsity of the wavelet

representation are reflected in the effectiveness of the corresponding bases
at representing d by m-term approximations. Let W1

2(C) denote the ball of
functions in L2(−p, p) obeying

F
p

−p
f(t)2 dt+F

p

−p
fŒ(t)2 dt [ C2.

Think of d as defined as a distribution acting on such functions f as in (1),
and consider m-term approximations in the Fourier basis

d̃Fm=C
m

a=1
cae ikah

and in the wavelet basis

d̃Wm=C
m

a=1
aakIa .

Evaluate performance of such approximations by the worst-case error
which either approach can incur on a function f ¥ W1

2(C). Formally,

Errm(d, Wavelets)= sup
f ¥W1

2 (C)

inf
I1, ..., Im

|Od, fP− d̃Wm (f; I1, ..., Im)|.

Errm(d, Fourier)= sup
f ¥W1

2 (C)

inf
k1, ..., km

|Od, fP− d̃Fm(f; k1, ..., km)|.

CURVELETS AND CURVILINEAR INTEGRALS 61



A simple calculation shows

Errm(d, Fourier)£ m−1/2, mQ.,

which exhibits rather slow decay with m, while for a certain C4 > 0,

Errm(d, Wavelets) £ exp(−(m/C4)), mQ.,

which exhibits much faster exponential decay.
In short, the wavelet basis gives radically better m-term approximations

to d than does the Fourier basis. The story is the same for every other point
evaluation functional dx. In a sense, the wavelet basis is ideal for sparse
representation of point evaluations.

1.2. Curvilinear Integrals

Let now C: I W R2 denote a simple closed curve in the unit square, of
finite length, with two continuous derivatives, and unit speed parametriza-
tion. Let nF(t) denote the unit normal vector to C(t) at time t. Associated
with the curve C(t) is the linear functional C acting on smooth vector fields
vF(x1, x2) via

C(vF)=F vF(C(t)) · nF(t) dt.

Just as the Dirac distribution was supported on a point, C is supported on
the curve C.

This functional has a well-known interpretation from vector calculus. If vF
measures a fluid velocity, then C measures the net flux across C per unit
time. One could consider alternate curve Y functional correspondences,
such as the scalar functional > f(C(t)) dt, but it appears that the results are
qualitatively similar—see Section 8 below. The analysis turns out to be
particularly straightforward and insightful for C.

Just as we asked previously for an optimal approximation to d, we can
now ask for an optimal m-term approximation to C. Suppose, given a
vector orthobasis or tight frame F, we construct an m-term approximation
to C by

C̃m(vF)=C
m

i=1
C(fFmi ) [vF, fFmi],

where we understand [vF, wF]=;jOvj, wjP, with O , P denoting the inner
product of L2.

62 CANDÈS AND DONOHO



In analogy to the one-dimensional case we could consider Fourier and
Wavelets orthobases for vector functions with components in L2[−p, p)2,
getting m-term approximants C̃F

m and C̃W
m . To measure quality of approx-

imation, we compare performance on vector fields with component
functions in the ball W1

2(C) of functions in L2(−p, p)2 obeying

||f||22+C
2

j=1

> “
“tj

f>
2

2
[ C2.

As a measure of performance, we can set

Errm(C, Wavelets)= sup
uj ¥W

1
2 (C)

inf
I1, ..., Im

|C(vF)− C̃W
m (vF, I1, ..., Im)|,

and similarly for Errm(C, Fourier).
In Section 6 below, we show that

Errm(C, Fourier) £ m−1/4, mQ., (5)

which exhibits rather slow decay with m, while

Errm(C, Wavelets) £ m−1/2, mQ.. (6)

In short wavelets are better than Fourier in representing curves—though
the advantage is now far less dramatic than it was for representing points.
In fact, the performance of wavelets, although better than Fourier
methods, is not very good. One wonders if there isn’t something even better
than wavelets for representing curves.

1.3. Curvelets

In this paper, we will show that the rate of m-term approximation of C

made available by previously-known bases, such as wavelets and Fourier
methods, can be substantially improved. The authors have recently con-
structed in [6] a new tight frame for functions in L2(R2) called a frame of
curvelets. Its original purpose was to represent objects with discontinuities
along C2 curves.

We construct a vector frame of curvelets based on the principle of
biorthogonal decomposition of the gradient operator. We use that frame to
approximate curve-supported functionals C and show that, for each C2

curve C, there is a sequence of m-term approximations constructed using
vector curvelets and obeying, for each d > 0,

Errm(C, Vector Curvelets)=O(m−1+d), mQ..
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This is substantially better than the rate available from Wavelets and
Fourier methods.

Moreover, it appears that this rate is essentially optimal. No basis or
frame can achieve an essentially faster rate of convergence than m−1

uniformly on all such curves C.

1.4. Contents

Section 2 gives a rapid exposition of the curvelets construction. Section 3
shows how to construct vector curvelets giving a biorthogonal decomposi-
tion of the gradient operator. Section 4 exhibits an isometry showing that
approximating C using vector curvelets is identical to approximating
images with edges using scalar curvelets. Section 5 deploys this isometry by
invoking results we have proven elsewhere to determine the minimax
behavior of the error Err

max
C

min
m1, ..., mm

Err(C, C̃m).

Section 6 compares the curvelet approximation to wavelet and Fourier
approximations. Section 7 discusses interpretations of these results. Section 8
shows that qualitatively similar results are available by similar methods for
the case of scalar integrands.

2. CURVELET CONSTRUCTION

We now very briefly describe the curvelet construction. There is a differ-
ence at large scales between this construction and the one given in [6].

2.1. Ridgelets

The theory of ridgelets was developed in the Ph.D. Thesis of Emmanuel
Candès (1998). In that work, Candès showed that one could develop a
system of analysis based on ridge functions

ka, b, h(x1, x2)=a−1/2k((x1 cos(h)+x2 sin(h)−b)/a). (7)

He introduced a continuous ridgelet transform Rf(a, b, h)=Oka, b, h(x), fP
with a reproducing formula and a Parseval relation. He showed how to
construct frames, giving stable series expansions in terms of a special
discrete collection of ridge functions. The approach was general, and gave
ridgelet frames for functions in L2[0, 1]d in all dimensions d \ 2—For
further developments, see [4, 5].
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[9] showed that in two dimensions, by heeding the sampling pattern
underlying the ridgelet frame, one could develop an orthonormal set for
L2(R2) having the same applications as the original ridgelets. The ortho
ridgelets are indexed using l=(j, k, i, a, e), where j indexes the ridge scale,
k the ridge location, i the angular scale, and a the angular location; e is a
gender token. Roughly speaking, the ortho ridgelets look like pieces of
ridgelets (7) which are windowed to lie in discs of radius about 2 i; hi, a=
a/2 i is roughly the orientation parameter, and 2−j is roughly the thickness.

The ortho-ridgelets have a concrete definition in the Fourier domain. Let
(kj, k(t): j ¥ Z, k ¥ Z) be an orthonormal basis of Meyer wavelets for L2(R)
[13], [14, Engl. Transl. p. 75], and let (w0

i0a(h), a=0, ..., 2 i0−1; w1
i, a(h),

i \ i0, a=0, ..., 2 i−1) be an orthonormal basis for L2[0, 2p) made of
periodized Lemarié scaling functions w0

i0, a at level i0 and periodized Meyer
wavelets w1

ia at levels i \ i0 [14, Engl. Transl. p. 113]. Let k̂j, k(w) denote
the Fourier transform of kj, k(t), and define ridgelets rl(x),
l(j, k; i, a, e) as functions of x ¥ R2 in the frequency-domain

r̂l(t)=|t|−
1
2 (k̂j, k(|t|) w

e
i, a(h)+k̂j, k(−|t|) w ei, a(h+p))/2. (8)

Here the indices run as follows: j, k ¥ Z, a=0, ..., 2 i−1−1; i \ i0, and, if
e=0, i=max(i0, j), while if e=1, i \ max(i0, j). Notice the restrictions on
the range of i, a. Let L denote the set of all such indices l.

2.2. Multiscale Ridgelets

Think of ortho ridgelets as objects which have a ‘‘length’’ of about 1 and
a ‘‘width’’ which can be arbitrarily fine. The multiscale ridgelet system
renormalizes and transports such objects, so that one has a system of
elements at all lengths and all finer widths.

The construction begins with a smooth partition of energy function
w(x1, x2) \ 0, w ¥ C.0 ([−1, 1]2) obeying ;k1, k2 w

2(x1−k1, x2−k2) — 1.
Define a transport operator, so that with index Q indicating a dyadic
square Q=(s, k1, k2) of the form [k1/2 s, (k1+1)/2s)×[k2/2 s, (k2+1)/2s),
by (TQf) (x1, x2)=f(2sx1−k1, 2 sx2−k2). The Multiscale Ridgelet with
index m=(Q, l) is then

km=2 s ·TQ(w ·rl).

In short, one transports the normalized, windowed orthoridgelet.
Letting Qs denote the dyadic squares of side 2−s, we can define the

subcollection of Monoscale Ridgelets at scale s:

Ms={(Q, l): Q ¥ Qs, l ¥ L}.
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It is immediate from the orthonormality of the ridgelets that each system of
monoscale ridgelets makes a tight frame, in particular obeying the Parseval
relation

C
m ¥Ms

Okm, fP2=||f||2L2.

It follows that the dictionary of multiscale ridgelets at all scales, indexed by

M=1s \ 1 Ms

is not frameable, as we have energy blow-up:

C
m ¥M

Okm, fP2=.. (9)

The Multiscale Ridgelets dictionary is simply too massive to form a good
analyzing set. It lacks inter-scale orthogonality–k(Q, l) is not typically
orthogonal to k(QŒ, lŒ) if Q and QŒ are squares at different scales and
overlapping locations. In analyzing a function using this dictionary, the
repeated interactions with all different scales causes energy blow-up (9).

The construction of curvelets solves this problem by in effect disallowing
the full richness of the Multiscale Ridgelets dictionary. Instead of allowing
all different combinations of ‘‘lengths’’ and ‘‘widths’’, we allow only those
where width % length2.

2.3. Subband Filtering

Our remedy to the ‘‘energy blow-up’’ (9) is to decompose f into sub-
bands using standard filterbank ideas. Then we assign one specific mono-
scale dictionary Ms to analyze one specific (and specially chosen) subband.

We define coronae of frequencies |t| ¥ [22s, 22s+2], and subband filters Ds

extracting components of f in the indicated subbands; a filter P0 deals with
frequencies |t| [ 1. The filters decompose the energy exactly into subbands:

||f||22=||P0f||22+C
s

||Dsf||22.

The construction of such operators is standard [17, 12, 13]; the coronization
oriented around powers 22s is nonstandard—and essential for us. Explicitly,
we build a sequence of filters F0 and Y2s=24sY(22s · ), s=0, 1, 2, ... with
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the following properties: F0 is a lowpass filter concentrated near frequencies
|t| [ 1; Y2s is bandpass, concentrated near |t| ¥ [22s, 22s+2]; and we have

|F̂0(t)|2+C
s \ 0

|Ŷ(2−2st)|2=1, -t.

Hence, Ds is simply the convolution operator Dsf=Y2s f f.

2.4. Definition of Curvelet Transform

Assembling the above ingredients, we are able to sketch the definition of
the Curvelet transform. We let MŒ consist of M merged with the collection
of integral triples (s, k1, k2, e) where s [ 0, (s, k1, k2) indexes coarse scale
dyadic squares in the plane of side 2−s \ 1, e ¥ {01, 10, 11}2 is a gender
indicator.

The curvelet transform is a map L2(R2) W a2(MŒ), yielding curvelet
coefficients (am: m ¥MŒ). These come in two types.

At coarse scales we have wavelet coefficients.

am=OWs, k1, k2, e, P0fP, m=(s, k1, k2) ¥MŒ0M,

where each Ws, k1, k2, e is a Meyer wavelet, while at fine scale we have Multi-
scale Ridgelet coefficients of the bandpass filtered object:

am=ODsf, kmP, m ¥ Ms , s=1, 2, ... .

Note well that for s > 0, each coefficient associated to scale 2−s derives
from the subband filtered version of f−Dsf−and not from f.

Several properties are immediate:

• Tight frame:

||f||22= C
m ¥MŒ

|am |2.

• Existence of coefficient representers (Frame elements): There are
cm ¥ L2(R2) so that

am — Of, cmP.

• L2 Reconstruction formula:

f= C
m ¥MŒ

Of, cmP cm.
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• Formula for frame elements: for s [ 0, cm=P0Ws, k1, k2, e, while for
s > 0,

cm=Dskm, m ¥Ms.

In short, fine-scale curvelets are obtained by bandpass filtering of Multi-
scale Ridgelets coefficients where the passband is rigidly linked to the scale
of spatial localization.

• Anisotropy scaling law: By linking the filter passband |t| % 22s to the
scale of spatial localization 2−s imposes that (1) most curvelets are
negligible in norm (most multiscale ridgelets do not survive the bandpass
filtering Ds); (2) the nonnegligible curvelets obey length % 2−s while
width % 2−2s. In short, the system obeys approximately the scaling relation-
ship

width % length2.

Note: it is at this last step that our 22s coronization scheme comes fully into
play.

• Oscillatory nature. Both for s > 0 and s [ 0, each frame element has
a Fourier transform supported in an annulus away from 0.

3. VECTOR CURVELET FRAMES FOR N

We define now a pair of vector frames wF ±m associated to biorthogonal
decomposition of the grad operator N. Define the sequence of multipliers

os=˛
2−s s < 0
2−2s s \ 0,

and derive the vector frame (wF+m ) from the curvelet frame by differentiation

wF+m (x)=os ·Ncm. (10)

This makes sense because curvelet frame elements are smooth and of rapid
decay.

Define each member of the dual vector frame (wF −m ) componentwise in the
frequency domain, with jth component

w̄−
m, j
5 (t)=o−1

s · ĉm(t) ·
itj
||t||2

, t ¥ supp(ĉm(t)). (11)
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This makes sense because each cm omits the origin from its support in the
frequency domain. Defining the divergence Div(vF)=;j (“/“xj) vj, we then
have

os ·Div(wF −m )=cm, (12)

which bears comparison with (10).
We will also need the definition of the Riesz transforms [16] Rj for

j=1, 2:

Rj(f) (x)=
1

(2p)2
F f̂(t)

itj
||t||

e itŒx dt.

These are bounded operators of L2(R2) which obey the Pythagorean relation

C
j

||Rj(f)||22=||f||22.

Definition 3.1. We say that a vector field vF with components vj in
L2(R2) for j=1, 2 is irrotational if the components obey

||R1(v2)−R2(v1)||2=0.

The irrotational vector fields have a special structure:

Lemma 3.1. Given a vector field vF whose components arise according to

vj=Rj(V), j=1, 2,

where V is an L2(R2) function, then vF is irrotational with L2(R2) components.
Given an irrotational vector field vF(x1, x2) with L2(R2) components, there

is a scalar function V ¥ L2(R2) with

vj=Rj(V), j=1, 2. (13)

Moreover, we have the Pythagorean relation

C
j

||vj ||
2
2=||V||22. (14)

Proof. To see the first half, substitute into the definition of irrota-
tionality, getting:

||R1(v2)−R2(v1)||2=||R1(R2(V))−R2(R1(V))||2.
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Now as the Ri are Fourier multipliers, they commute: R1R2 — R2R1. Hence
||R1(R2(V))−R2(R1(V))||2=0.

To see the second half, note that the Fourier transforms of components
of an irrotational field obey

t1 · v̂2(t)=t2 · v̂1(t) a.e. dt.

It follows that at a.e. t, the vector (v̂1(t), v̂2(t)) lies in the subspace
spanned by (t1, t2). Letting rF(t)=(t1/||t||, t2/||t||), and defining a.e. t the
function

V̂(t)=(t1 v̂1(t)+t2 v̂2(t))/||t||,

it follows that a.e. t we have

(v̂1(t), v̂2(t))=V̂(t) ·r(t).

The desired result (13) is just the same equation in the original domain. The
Pythagorean relation is immediate. Q.E.D.

We note that the wF ±m are irrotational. Indeed, wF+m arises as the gradient
field of a scalar function, and any such field is irrotational: the Fourier
representation

1 “
“xj

f2^ (t)=(itj) f̂(t)

shows that V is given by V̂(t)=f̂(t) ||t||.
As for wF −m the Fourier domain formula (11) may be viewed as exhibiting

wF −m explicitly as such as function, with V̂(t) 3 ĉm(t)/||t||.
The following result shows that we can represent all irrotational fields

with the (wF ±m ),

Theorem 3.1. The systems (wF+m )m and (wF −m )m are vector frames for the
space of irrotational vector fields with components in L2(R2). For each choice
of sign for ± we obtain a system obeying the almost orthogonality

1C
j

> C
m

amw
±
m, j
>2
2

21/2 [ C·1C
m

a2m 2
1/2

(15)

along with the L2 norm equivalence:

C
m

[wF ±m , vF]
2£ 1C

j
||vj ||

2
2
21/2 - irrotational fields vF. (16)

70 CANDÈS AND DONOHO



In addition the two vector frames are quasi-biorthogonal:

[wF+m , wF
−
mŒ]=2 sŒ−s ·Ocm, cmŒP, m, mŒ ¥M, (17)

where we understand

[wF+m , wF
−
mŒ]=C

j
Ow+m, j, w

−
mŒ, jP.

The proof of Theorem 1 is effectively a repeated application of homo-
geneous Fourier multiplier ideas. We begin with the biorthogonality (17),
note that we have the Fourier side definition of w+m, j:

w+m, j5(t)=os · ĉm(t) · itj, -t. (18)

Hence, passing to the Frequency side,

Ow+m, j, w
−
mŒ, jP=

1
(2p)2

F w+m, j5(t) w−
mŒ, j
5(t) dt (19)

=
1

(2p)2
F os · ĉm(t) itj ·o

−1
s · ĉmŒ(t)

− itj
||t||2

dt (20)

=
1

(2p)2
F ĉm(t) · ĉmŒ(t) ·

t2j
||t||2

dt. (21)

Hence,

C
j
Ow+m, j, w

−
mŒ, jP=

1
(2p)2

F ĉm(t) · ĉmŒ(t) ·C
j

t2j
||t||2

dt (22)

=Ocm, cmŒP, (23)

giving (17).
To get the frame properties (15)-(16), we use the fact that curvelets relate

well to fractional powers of the Laplacian. The usual Laplacian
D=;2

i=1 “
2/(“x2i ) corresponds to the Fourier multiplier (Df)^ (t)=

−|t|2 · f̂(t); it makes sense therefore to define fractional powers of the
Laplacian by the Fourier multiplier

((−D)a f)^ (t)=|t|2a · f̂(t).

Following the article [7] we define, for a curvelet cm(x1, x2), two com-
panions c ±m (x1, x2) according to

c ±m =o + 1s (−D) ±1/2 cm,
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where of course s refers to the scale index occupying the first slot (s, k1, k2,
j, k, i, a, e) in the curvelet index m. Because cm is effectively concentrated in
the frequency domain near |t| % 22s, we have 22s |t| % 1 through the bulk of
the frequency domain support of cm and hence we anticipate ||c ±m || % ||cm ||.
The following result can be proved along the lines of a similar result in [7].

Theorem 3.2. The systems (c+m )m and (c−m )m are frames for L2(R2). For
either choice of sign ± , one obtains a system with almost orthogonality

> C
m

amc
±
m
>
2 [ C·1C

m

a2m 2
1/2

, (24)

and with L2 norm equivalence:

C
m

Oc ±m , fP
2£ ||f||22. (25)

In addition, they are quasi-biorthogonal:

Oc+m , c
−
mŒP=2 sŒ−sOcm, cmŒP. (26)

To get now (15) form Theorem 2, we observe that

w ±
m, j=Rj(c

±
m ), j=1, 2. (27)

From this and the Pythagorean relation for Riesz transforms we have

C
j

> C
m

amw
±
m, j
>2
2
=> C

m

amc
±
m
>2
2
.

Thus the frame relation (15) for (wF ±m ) follows from (24) for (c ±m ).
We now use Lemma 3.1 to get (16). Given a vector field vF it furnishes an

associated scalar field V with

C
m

[wF ±m , vF]
2=C

m

1C
j
ORj(c

±
m ), vjP2

2

=C
m

1C
j
ORj(c

±
m ), Rj(V)P2

2

.

The Pythagorean relation for the Riesz transforms gives

C
j
ORj(c

±
m ), Rj(V)P=Oc ±m , VP.
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Substituting into the preceding display, we have an isometry between the
w ±
m coefficients of vF and the c ±m coefficients of V:

C
m

[wF ±m , vF]
2=C

m

Oc ±m , VP
2.

Finally,

C
m

Oc ±m , VP
2£ ||V||22

=C
j

||vj ||
2
2,

where we used the frame property (25) of the companions (c ±m ) and the
Pythagorean relation (14).

Theorem 3.3. We have the reproducing formula

Nf=C
m

[Nf, wF −m ] wF+m (28)

valid for all sufficiently nice f, where we understand

[Nf, wF −m ]=C
j

7 “
“xj

f, w−
m, j
8 .

Suppose that f is a finite superposition of cm’s. Evidently,

Nf=C
m

Of, cmP Ncm (29)

=C
m

o−1
s ·Of, cmP ·wF+m . (30)

We now show that

o−1
s ·Of, cmP=[Nf, wF −m ]. (31)

We start from an integration-by-parts:

7 “
“xj

f, w−
m, j
8=−7f,

“

“xj
w−
m, j
8 .
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Passing to the frequency side, we have

7f,
“

“xj
w−
m, j
8= o−1

s

(2p)2
F f̂(t) itj ĉm(t)

− itj
||t||2

dt (32)

=
o−1
s

(2p)2
F f̂(t) ĉm(t)

t2j
||t||2

dt (33)

=−o−1
s ·ORj(f), Rj(cm)P. (34)

The Pythagorean relation for the Riesz transforms gives

C
j
ORj(f), Rj(cm)P=Of, cmP

and the proof is complete.

4. A VECTOR/SCALAR ISOMETRY

Let B be a region in R2 with smooth simple boundary curve C. Let C be
the corresponding linear functional. We will see below that in a distribu-
tional sense,

C=C C(wF −m ) wF
+
m . (35)

Suppose that we build an m-term approximation C̃m using terms m1, ..., mm:

C̃m=C
m

i=1
C(wF −mi ) wF

+
mi
. (36)

To see how good an approximation C̃m might be, we consider its
maximal deviation from C over smooth vector fields:

Err(C, C̃m)=sup{|C(vF)− C̃m(vF)| : ||Div(vF)||2 [ 1}.

It turns out that there is an isometry linking performance of m-term
vector curvelet approximation to C with performance of an m-term scalar
curvelet approximation to B.
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Theorem 4.1. Let m1, ..., mm be given. Consider the m-term approxima-
tion to f=1B by curvelets, formed according to

f̃m=C
m

i=1
O1B, cmiP cmi .

Let C̃m be as in (36). Then

Err(C, C̃m)=||f−f̃m ||2.

In this section, we develop the proof of this theorem, which is really the
application of two specific isometries.

4.1. Gauss-Green Theorem

Let B be a region in the plane with C2 boundary, and let f be a smooth
function. Then

F
B

Df=F
“B

nF ·Nf.

Here “B is the boundary of B, and n is the normal field along the boundary.
Reinterpret this as follows. Suppose B is a region with C2 boundary “B

and that C(t) is a unit speed parametrization of the boundary. Let C be the
corresponding linear functional

C(vF)=F vF(C(t)) · nF(t) dt.

Then

O1B, DfP=C(Nf). (37)

In short, for smooth functions f, integrals over B can be related to the
functional C applied to related functions of Nf.

Recall the formal identity from vector calculus D=N ·N, which can be
stated correctly for nice f and g as

Of, DgP=−[Nf, Ng].

From a modern functional analysis perspective, we may use a distributional
version of this, where f is not smooth, to rewrite (37), giving

C(Nf)=O1B, DfP=−[N1B, Nf],

identifying C=−N1B in a distributional sense. Applying now (28) from
Theorem 3, we get (35).
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4.2. Evaluation Isometry

Let WF denote a vector field on R2 and consider the seminorm

|||WF |||=sup{[WF , vF] : ||Div(vF||2 [ 1}.

This is well-defined on smooth vector fields of compact support having
zero mean value.

It is a simple exercise in integration by parts—again reducing to the
formal identity D=N ·N—to see that we have the isometry

|||Nf|||=||f||2, (38)

valid whenever f is smooth and of compact support.

4.3. m-term Approximation Isometry

We are now able to prove Theorem 4.
Owing to the definition of the norm ||| · |||, we may write

Err(C, C̃m)=|||C− C̃m |||.

Owing to (37) and the definition of wF −m , we can write

C(wF −m )=o−1
s O1B, cmP.

Applying this,

|||C− C̃m |||=:::N1B− C
m

i=1
C(wF −mi ) w

+
mi
:::

=:::N1B− C
m

i=1
C(wF −mi ) os ·Ncmi

:::

=:::N 11B− C
m

i=1
C(wF −mi ) oscmi

2:::

=>1B− C
m

i=1
O1B, cmiP cmi

>
2,

the last step invoking (38).

5. EXPLOITING THE VECTOR/SCALAR ISOMETRY

The problem of approximating an indicator 1B by curvelets when B has a
C2 boundary has recently been studied by Candès and Donoho (1999).
They showed the following.
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Theorem 5.1 [6]. For m > 0 define the m-term approximation to f=1B
as follows. Let m1, ..., mm denote the indices of the m largest-amplitude
curvelet coefficients of f. Define an m-term approximation to f by

f̃m C
m

i=1
Of, cmiP cmi .

Then if B is a subset of the unit square with a simple C2 boundary curve C,
and the C2 norm of tW C(t) is at most A, then

||f−f̃m ||2 [ C(A) · log(m)3/2 m−1,

where C(A) denotes a constant depending only on A.

Combining this with our isometry, we have the following.

Theorem 5.2. Let C be a simple C2 unit-speed curve, and suppose the C2

norm of t W C(t) is at most A. Let C be the corresponding curve integral. For
each m > 0, let mi, ..., mm denote the indices of the m largest-amplitude vector
curvelet coefficients of C (i.e. the m-largest amplitude C(wF m)). Define an
m-term approximation to C by

C̃m=C
m

i=1
C(wF −mi ) wF

+
mi
.

Then

Err(C, C̃m) [ C(A) · log(m)3/2 m−1,

where C(A) denotes a constant depending only on A.

6. COMPARISON: FOURIER AND WAVELET
REPRESENTATIONS

To place Theorem 5.2 in perspective, we now sketch comparable
constructions for sinusoids and for wavelets, justifying the results of the
introduction.

6.1. Vector Fourier Representation

Let the domain of interest be [−p, p)2; with k denoting the pair (k1, k2),
let K denote the collection of nonzero pairs. With ek(t) denoting the
complex exponential e i(k1t1+k2t2)/(2p), the collection (ek)k ¥ K is an ortho-
normal set, but not a basis, as it is missing the constant function e0, 0.
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With ||k||=(k21+k22)
1/2, let EFk(t1, t2) be a vector field on [−p, p)2,

defined by

EFk(t)=ek(t) ·k/||k||, k ¥ K.

Then we have

Div(EFk)=||k|| · ek,

and

Nek=||k|| ·EFk

and

[EFk(t), EFkŒ(t)]=dk, kŒ.

This system makes a tight frame giving a sort of diagonal representation
of N:

Nf=C
k

[Nf, EFk] EFk.

We will use the vanishing-mean system (EFk)k ¥ K to represent C; we write
tentatively

C= C
k ¥ K

C(EFk) EFk.

At first glance, this expansion seems to omit a necessary component at zero
frequency k=(0, 0). However, this turns out not to be needed, because of
the following.

Lemma 6.1. Let B be a region in the plane with boundary curve C, and
let C denote the corresponding curvilinear integral. Then for any constant
vector field cF,

C(cF)=0.

The lemma is quite clear from the net flux interpretation of C. As
Div(cF)=0, the net flux into the region B must vanish.

For the m-term approximation

C̃m=C
m

i=1
C(EFk(i)) EFk(i),
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we can again derive the isometry

Err(C, C̃m)=||f0−f̃m ||2,

where f0=1B−O1B, e0, 0P e0, 0 is a zero-mean version of the indicator of B
and where

f̃m=C
m

i=1
Of0, ek(i)P ek(i).

The claim (5) of the introduction follows from a simple observation: Let
B be a region with smooth C2 boundary having nonvanishing curvature.
Then the Fourier coefficients obey f̂k £ ||k||−3/2 as ||k|| Q.. The typical
example of this is given by the indicator of a disk, whose Fourier represen-
tation involves Bessel functions. It follows that, in general, there are O(R2)
coefficients of size \ R−3/2. Now as the system of complex exponentials is
orthonormal, the best m-term approximation is built from the m terms
having the m largest amplitudes. It follows that

||f−f̃m ||2 £ m−1/4.

This establishes (5).

6.2. Vector Wavelet Representation

Now let the domain be R2 and consider an orthobasis of Meyer wavelets,
(ks, k1, k2, e : s, k1, k2 ¥ Z), where s is a scale index, k1, k2 are position indices
and e is a bivariate gender indicator. For short, we put I=(s, k1, k2, e).

We define associated vector fields via Fourier multiplier methods as in
Section 3. With os=2−s, we let

fF+I =os ·NkI

and we define the vector field fF−I componentwise by

(fF−I )j=o−1
s ·Rj((−D)−1/2 kI),

with Rj the jth Riesz transform and (−D)−1/2 the appropriate fractional
Laplacian.

This pair of systems again makes a pair of biorthogonal frames, and we
may write formally

C=C
I

C(fF−I ) fF+I .
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For the m-term approximation

C̃m=C
m

i=1
C(fF−I(i)) fF+I(i),

we can again derive the isometry

Err(C, C̃m)=||f−f̃m ||2,

where f=1B and where

f̃m=C
m

i=1
Of, kI(i)P kI(i).

The claim (6) of the introduction follows from a simple observation: Let
B be a region with smooth C2 boundary having nonvanishing curvature.
Then there are order 2 s wavelet coefficients at scale 2−s which correspond
to spatial locations ‘‘on the curve’’, and these wavelet coefficients are of
size % 2−s. It follows that, in general, there are O(N) coefficients of size
\ c ·N−1. Now as the system of wavelets is orthonormal, the best m-term
approximation is built from the m terms having the m largest amplitudes. It
follows that

||f−f̃m ||2 £ m−1/2.

This establishes (6).

7. DISCUSSION

7.1. Optimality of These Results

We know, as explained in [6, 8], that the result quoted in Theorem 5 is
near optimal. That is, no well-posed system of representation (even allowing
substantial adaptation) can do better than the rate 1/m in approximating
objects with edges; and the curvelet system does essentially this well (except
for the log terms).

This seems to imply that the best possible rate of m-term approximation
of curvilinear integrals C cannot converge faster than a 1/m rate in
general. However, what we have shown is actually not quite that strong.

Unfortunately the edges/curvilinear integrals isometry does not quite
settle the question of optimal m-term approximation of C. For a compre-
hensive answer, we would need an independent lower bound for the
problem of m-term approximation of C. Without this there remains the
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possibility that some method of direct approximation to C could be
invented to which the isometry cannot be applied, and for which no corre-
sponding method of approximation of f existed, and for which lower
bounds for approximation of f would not be relevant.

7.2. Eulerian-Lagrangian Perspective

Our results are of most interest in connection with approximating a
family of integrals, rather than a single integral. Suppose we have a
sequence of vector fields vFi, and a collection of integrals C1, ..., CN which
we may like to evaluate, and which are of quite general form. For example,
we might have a sequence of evolving curves Cn, n=1, ..., N. Then an
interesting strategy for this evaluation would be to expand both the vector
fields and the integrals into the vector curvelet frame and exploit the coef-
ficient sparsity of the Cn to calculate the integrals rapidly.

Thus we are adopting a single coordinate system for representing these
curvilinear integrals; this is a kind of Eulerian perspective. In contrast, an
approach which attempted to build a representation specifically driven by
the curves Cn would be Lagrangian. Our opinion is that there may be little
advantage to doing so; compare [8] for a clearer exposition on this point.

7.3. Interpretation of the Expansion

The vector curvelet expansion synthesizes the singular functional using
terms obeying the scaling law width % length2, clustering more and more
tightly about the curve at fine scales. An m-term approximation represents
C as a smooth vector field peaking very strongly in the vicinity of the curve
C. The functional C̃m(vF) therefore uses information about vF not just on the
curve on C but also in a neighborhood about the curve; this neighborhood
shrinks as successively more terms are included in the approximation.

8. SCALAR INTEGRANDS

Until now, we have focused on curvilinear integrals associated with
vector integrands. The same methods can give results for scalar integrals
acting on functions,

I(f)=F f(C(t)) dt,

where again C(t) is a simple unit-speed C2 curve bounding a closed region
B, which is contained entirely inside [−1, 1]2.
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In this setting, suppose we have a pair of dual frames with synthesizing
elements (fm) and analyzing elements (jm). We consider methods which
build m-term approximations of the form

Ĩm(f)=C
m

i=1
I(jmi ) fmi , (39)

where the mi can be chosen adaptively based on the curve C. We are inter-
ested in finding a basis or frame which, when used in the above scheme,
yields the highest-quality m-term approximations. We measure perfor-
mance according to

Err(I, Ĩm)=sup{|I(f)− Ĩm(f)| : ||Df||2 [ 1}.

In short, we are asking that the m-term approximation reproduce the
integral accurately for all sufficiently smooth functions, where smoothness
is measured by the L2 size of the Laplacian.

8.1. Isometry with L2 Curvelet Approximation

In analogy with the vector case, we can establish an isometry between
this problem and a problem of approximation of a piecewise smooth object
with a singularity along a curve. Given a curve C, our plan is to formally
associate a corresponding continuous function H(x1, x2) which we use
curvelets to approximate in L2. Then, we observe that there is a formal
isometry, showing that when we approximate H well in L2 norm by cur-
velets, then we approximate I well by dual curvelets according to the Err
metric. Making this work out completely and not just formally in this case
will require some adjustments to the approximation scheme (39).

The key steps in this process are as follows.

• Frame construction. Starting with curvelets (cm), we can build a
pair of frames in a fashion similar to the cm functions. With the powers of
the Laplacian (−D)a defined in the obvious way, set

f+m=2−4s(−D) cm,

f−
m=2+4s(−D)−1 cm .

The resulting systems obey inequalities exactly paralleling those in
Theorem 2. With constants os=2−4s at positive s and 2−s at negative s, they
make a biorthogonal decomposition of the Laplacian D:

Df=C
m

o−1
s ·ODf, f−

m P f+m .
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• Induced potential. Given the curve C, consider the object H defined
on R2 by

H(x)=F log(||x−C(s)||) ds.

This is a C. function on R20 Image(C), which, as log(r) is the fundamental
solution of Laplace’s equation, satisfies

DH=I,

in the distributional sense. In fact, H is the electrostatic potential asso-
ciated with a uniform distribution of charges on C. For more information
on potential theory and Laplace’s equation, see e.g. [1, 15]. We wish to
exploit the fact that H solves this PDE, and the fact that our error measure
Err involves the same Laplacian D, to obtain an isometry of m-term
approximation problems.

• Moment matching. Unfortunately, the potential H is not in L2: it
has growth O(log(||x||)) at .; see the example below. We desperately need
the L2 property for our approach to make sense. To obtain this, we con-
struct a special function G ‘‘matching’’ the asymptotic growth of H and
subtract it off. To get G, we construct g with these properties:

— g is C. and of rapid decay.
— g is in the span of the curvelets (cl) for s < 0. Essentially, it is a

combination of wavelets at coarse scales only.
— g matches the low-order moments of I: for every linear poly-

nomial p(x)=a+bx1+cx2,

I(p)=Og, pP.

We then define G as the solution to

DG=g;

this may be obtained from the convolution log(r) f g. It is easily shown
that G is C. and of slow growth at .. In fact, it has asymptotic growth
properties snatching H, so that H−G is in L2. (Of course much more is
true).

• Compensation. Define now the compensated object

H0=H−G.
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This belongs to L2; in fact, it is of rapid decay at . and is C. away from
the curve C. Moreover,

DH0=I−g=I0, say.

Hence, while I does not correspond to an L2 object, a smooth perturba-
tion I0 does.

• m-term Approximation to H0. Now we use curvelets to approxi-
mate H0. In fact, H0 is a highly regular object, C. except on the curve C,
where it exhibits a cusp singularity. Enumerate the curvelets as cmi in order
of decreasing curvelet coefficients of H0; then consider the m-term approx-
imation:

H̃0
m=C

m

i=1
OH0, cmiP cmi .

• m-term approximation to I0. Now we use dual curvelets to approxi-
mate I0. Take the coefficients OI0, f−

m P os arranged in decreasing magni-
tude order; and define

Ĩ0
m=C

m

i=1
OI0, f−

mi
P f+mi .

• Correspondence. We note that Ĩ0
m=DH̃0

m; the point is simply that
the dual curvelets were constructed so that (1) the same terms get selected
as the m terms in the approximation

ODf, f−
m P os=Of, cmP

and (2) the corresponding terms agree,

ODf, f−
m P f+m=Of, cmP Dcm,

giving term-by-term equality of an m-term sum.
• Isometry. We finally have

||H0−H̃0
m ||2=sup{OH0−H̃0

m, fP : ||f||2 [ 1}

=sup{OH0−H̃0
m, DFP : ||DF||2 [ 1}

=sup{OD(H0−H̃0
m), FP : ||DF||2 [ 1}

=sup{OI0− Ĩ0
m), FP : ||DF||2 [ 1}

=Err(I0, Ĩ0
m). (40)
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To the same extent that we can approximate H0 by curvelets, we can
approximate the perturbed curvilinear integral I0 by operator-biorthogo-
nal curvelets, with the same number of terms and the same error.

• m+1-term approximation to I. Now we translate (40) into a result
about approximating I itself. Consider the m+1-term approximant

Ĩm+1=g+C
m

i=1
OI0, f−

mi
P f+mi . (41)

Now obviously

Err(I, Ĩ0
m)=Err(I, Ĩm+1).

Hence, the m+1-term approximation to I has an error identical to the m
term approximation to I0.

To make this approximation more familiar, note that at fine scales

OI0, f−
m P=OI, f−

m P, -s > 0.

Hence, if we define coefficients

am=˛
OI, f−

m P, s > 0
OI−g, f−

m P, s [ 0,

the approximation scheme (41) Ĩm+1 has the form

Ĩm+1=g+C
m

i=1
amif

+
mi
.

It involves an m-term approximation where coefficients at coarse scales are
lightly modified. To summarize,

||H0−H̃0
m ||2=Err(I, Ĩm+1). (42)

To the same extent that we can approximate the object H0 by curvelets,
we can approximate the perturbed curvilinear integral I by operator-
biorthogonal curvelets, with the same number of terms and the same error.

We conclude that whatever the rate of L2-approximation to H0 using
curvelets, we have the same rate ofErr- approximation toI by dual curvelets—
provided we expand our approximation scheme to have the form (41).

The study of L2 approximation to H0 using curvelets is not covered by
the existing analysis in [6], which focused on objects with discontinuities
along curves. For a general curve C, H0 is actually continuous, and is in
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fact Lipschitz. The object H0 has a singularity along C, but it is not a
simple discontinuity; instead NH0 has a discontinuity across C. It turns out
that the techniques of [6] can yield results in this setting.

8.2. An Example: The Circle

Let our curve traverse the unit circle: C(t)=(cos(t), sin(t)) defined on
t ¥ [0, 2p). Then

H(x)=log+ ||x||,

and the gradient is defined everywhere off the unit circle, with

NH(x)=N log+ ||x||=˛0 ||x|| < 1,
x/||x||2 ||x|| > 1.

Let now Hj(x)=
“

“xj
H(x) denote the jth component of NH, for j=1, 2.

There exists a well-defined function H̃j which is C.(R2) and such that

Hj(x)=1{||x|| > 1} · H̃j(x).

In short, component Hj has a representation as a C. function which has been
mutilated by multiplication by the indicator of a disc.

Windowed versions of such mutilated objects were studied in the article
[6], and the techniques developed there give immediately information
about the sparsity properties of the curvelet coefficients of windowed
versions of Hj. These in turn can be used to infer sparsity properties of the
curvelet coefficients of H0.

The proof of Theorem 5.1 actually yields the following conclusion.

Theorem 8.1. Let B be a region with C2 boundary curve. Let f=1Bc ·f
where f is a C2 function of compact support. Fix p > 2/3. The curvelet
coefficients at scale s > 0 obey the inequality

1C
Ms

|am |p2
1/p

[ Cp, -s > 0.

We now make a remark about the similar sparsity properties of curve-
lets and dual curvelets expansions. It essentially follows from the fact
that smooth Fourier multipliers transform a curvelet frame element—i.e.
a curvelet-atom—into an object with sparse curvelet coefficients—i.e. a
curvelet-molecule. We omit the proof.
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Theorem 8.2. Suppose that vF is an irrotational vector field with L2

components of compact support. Suppose we expand each component vj in a
curvelet expansion, and the curvelet coefficients Am, j at scale s > 0 obey the
inequality

1C
Ms

|Am, j |p2
1/p

[ Cp, -s > 0.

Then the vector curvelet coefficients

am=[wF −m , vF]

obey also the inequality

1C
Ms

|am |p2
1/p

[ C −p, -s > 0.

Now we apply these results on sparsity of representation of NH0 to infer
properties of H. We use for our tool the biorthogonal expansion of NH0.
With all definitions as in Section 3 above:

os · [NH0, wF −m ]=OH0, cmP, m ¥MŒ.

It follows from this identity that summability properties of the vector cur-
velet analysis of NH0 give summability properties of the curvelet coeffi-
cients of H. Combining this with Theorem 8.2 gives

Corollary 8.1. Let H(x)=log+(||x||) as above. The curvelet coeffi-
cients of H0 at scale s > 0 obey the inequality

1C
Ms

|22s ·am |p2
1/p

[ Cp, -s > 0.

From this, and some elementary analysis relating ap norms to m-term
approximations, we get the following:

Corollary 8.2. Let H(x)=log+(||x||) as above. For m > 0 define the
m-term approximation to H0 as follows. Let m1, ..., mm denote the indices of
the m largest-amplitude curvelet coefficients of H0. Define

H̃0
m=C

m

i=1
OH0, cmiP cmi .
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Then for each d > 0,

||H0−H̃0
m ||2 [ Cd ·m−3+d, m \ 1.

Corollary 8.3. Let I be as above. For m > 0 define the m+1-term
approximation to I as above. Then for each d > 0,

Err(I, Ĩm+1) [ Cd ·m−3+d, m \ 1.

8.3. General Case

Our analysis of the case H(x)=log+(||x||), immediately suggests the
following:

Conjecture. For a typical C2 curve bounding a nice region B, the rate of
best m-term curvelet approximation to H0 is O(m−3+d) for each d > 0.

The key point is to use potential theory to observe that the case of a
circle should be rather typical.

If we consider NH when the potential H derives from a general C2 curve,
we are studying what is well known in potential theory as the ‘‘gradient of
a single-layer potential’’.

Existing literature of single-layer potentials shows that quite generically,
the component of the gradient normal to the curve C will have a step dis-
continuity across the curve C. Consider for example, Coifman and Meyer,
[15], Chapter 12, ‘‘Potential Theory in Lipschitz Domains’’. Away from
the discontinuity, the gradient will obey uniform C2 smoothess estimates;
so each component of the gradient exhibits qualitatively the same proper-
ties which we used for the case of the circle. A rigorous proof of our
conjecture would of course require a formalization of the above observa-
tions into suitable estimates.

In short, results for approximation of curvilinear integrals follow imme-
diately from bounds for approximation of objects with singularities along
C2 curves, when the singularity across the curve C is not a discontinuity
but instead has a discontinuous gradient.

8.4. Comparison to Fourier and Wavelets

We can compare the above result to rates for Fourier and Wavelet
approximation.

For Wavelet approximation, note that for compactly supported wavelets,
one can construct wavelet Riesz Bases for the Laplacian in the obvious
way, and then use them to build isometrics between H and I using
wavelets rather than curvelets. One then builds m+1-term dual wavelet
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approximations ĨW
m+1 to I by wavelets, which correspond in a natural way

to orthonormal wavelet approximations to H0. Proceeding in this fashion,
(or, in fact, by direct calculation) we get the rate result

Err(I, ĨW
m ) £ m−3/2. (43)

The main calculation underlying this result yields the following conclu-
sion. There are order 2 s wavelet coefficients of object H0 at scale 2−s which
correspond to spatial locations ‘‘on the singularity’’, and these wavelet
coefficients are of size % 2−2s. It follows that, in general, there are O(N)
coefficients of size \ c ·N−2. Now as the wavelets are orthonormal, the best
m-term approximation to H0 is built from the m terms having the m largest
amplitudes. It follows that

||H0−H̃0, W
m ||2 £ m−3/2.

This leads to (43).
Our isometry approach does not work well with the Fourier series basis

for L2[−p, p)2, as H0 is not supported in [−p, p)2. However, direct cal-
culations give the following result for a certain m+1-term dual Fourier
approximation ĨF

m+1 to I, analogous to (41):

Err(I, ĨF
m) £ m−3/4. (44)

We observe again the pattern that Curvelet decompositions achieve
roughly twice the approximation rate of wavelet decompositions and
roughly four times the rate of Fourier decompositions.
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